Data Visualization using Python Pandas library

Data Visualization using Python Pandas library
Photo by NEOM / Unsplash

Table of Content

In this tutorial, we will explore how to use Pandas to visualize data. We will cover various techniques and code snippets to create insightful visualizations. Let's dive in!

1- Import the necessary libraries:

import pandas as pd
import matplotlib.pyplot as plt

2- Load the data into a Pandas DataFrame:

data = pd.read_csv('data.csv')

3- Display a summary of the DataFrame:

print(data.head())

4- Plot a line chart to visualize the trend over time:

data.plot(x='Date', y='Value', kind='line')
plt.xlabel('Date')
plt.ylabel('Value')
plt.title('Trend over Time')
plt.show()

5- Create a bar chart to compare different categories:

data.plot(x='Category', y='Value', kind='bar')
plt.xlabel('Category')
plt.ylabel('Value')
plt.title('Comparison of Categories')
plt.show()

6- Generate a scatter plot to explore the relationship between two variables:

data.plot(x='Variable1', y='Variable2', kind='scatter')
plt.xlabel('Variable1')
plt.ylabel('Variable2')
plt.title('Relationship between Variable1 and Variable2')
plt.show()

7- Visualize the distribution of a numerical variable using a histogram:

data['Value'].plot(kind='hist')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Distribution of Value')
plt.show()

8- Boxplot

  1. Create a boxplot to identify outliers and understand the distribution of a variable:
data.boxplot(column='Value')
plt.ylabel('Value')
plt.title('Boxplot of Value')
plt.show()

9- Plot

  1. Plot a pie chart to show the proportion of different categories in the data:
data['Category'].value_counts().plot(kind='pie', autopct='%1.1f%%')
plt.ylabel('')
plt.title('Proportion of Categories')
plt.show()

10- Heatmap

Visualize the correlation between variables using a heatmap:

correlation = data.corr()
plt.imshow(correlation, cmap='coolwarm', interpolation='nearest')
plt.colorbar()
plt.xticks(range(len(correlation.columns)), correlation.columns, rotation=90)
plt.yticks(range(len(correlation.columns)), correlation.columns)
plt.title('Correlation Heatmap')
plt.show()

These code snippets will help you get started with visualizing data using Pandas. Experiment with these techniques to gain valuable insights from your datasets!








Open-source Apps

9,500+

Medical Apps

500+

Lists

450+

Dev. Resources

900+

Read more

Bias in Healthcare AI: How Open-Source Collaboration Can Build Fairer Algorithms for Better Patient Care

Bias in Healthcare AI: How Open-Source Collaboration Can Build Fairer Algorithms for Better Patient Care

The integration of artificial intelligence (AI), particularly large language models (LLMs) and machine learning algorithms, into healthcare has transformed the industry dramatically. These technologies enhance various aspects of patient care, from diagnostics and treatment recommendations to continuous patient monitoring. However, the application of AI in healthcare is not without challenges.

By Hazem Abbas