Data Visualization using Python Pandas library

Data Visualization using Python Pandas library
Photo by NEOM / Unsplash

In this tutorial, we will explore how to use Pandas to visualize data. We will cover various techniques and code snippets to create insightful visualizations. Let's dive in!

1- Import the necessary libraries:

import pandas as pd
import matplotlib.pyplot as plt

2- Load the data into a Pandas DataFrame:

data = pd.read_csv('data.csv')

3- Display a summary of the DataFrame:

print(data.head())

4- Plot a line chart to visualize the trend over time:

data.plot(x='Date', y='Value', kind='line')
plt.xlabel('Date')
plt.ylabel('Value')
plt.title('Trend over Time')
plt.show()

5- Create a bar chart to compare different categories:

data.plot(x='Category', y='Value', kind='bar')
plt.xlabel('Category')
plt.ylabel('Value')
plt.title('Comparison of Categories')
plt.show()

6- Generate a scatter plot to explore the relationship between two variables:

data.plot(x='Variable1', y='Variable2', kind='scatter')
plt.xlabel('Variable1')
plt.ylabel('Variable2')
plt.title('Relationship between Variable1 and Variable2')
plt.show()

7- Visualize the distribution of a numerical variable using a histogram:

data['Value'].plot(kind='hist')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Distribution of Value')
plt.show()

8- Boxplot

  1. Create a boxplot to identify outliers and understand the distribution of a variable:
data.boxplot(column='Value')
plt.ylabel('Value')
plt.title('Boxplot of Value')
plt.show()

9- Plot

  1. Plot a pie chart to show the proportion of different categories in the data:
data['Category'].value_counts().plot(kind='pie', autopct='%1.1f%%')
plt.ylabel('')
plt.title('Proportion of Categories')
plt.show()

10- Heatmap

Visualize the correlation between variables using a heatmap:

correlation = data.corr()
plt.imshow(correlation, cmap='coolwarm', interpolation='nearest')
plt.colorbar()
plt.xticks(range(len(correlation.columns)), correlation.columns, rotation=90)
plt.yticks(range(len(correlation.columns)), correlation.columns)
plt.title('Correlation Heatmap')
plt.show()

These code snippets will help you get started with visualizing data using Pandas. Experiment with these techniques to gain valuable insights from your datasets!








Open-source Apps

9,500+

Medical Apps

500+

Lists

450+

Dev. Resources

900+